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ABSTRACT
Recent advancements in machine learning and artificial intelligence
have fueled interest in scalable data analysis systems. However, a
critical challenge arises in the form of drift in real-world data, where
models trained on historical data may face difficulties adapting
to unforeseen patterns or distribution shifts. This drift poses a
significant obstacle to the reliability of data analytics models in
dynamic environments, emphasizing the need for adaptability to
changing conditions.

This paper explores an adaptive approach for detecting model
drift in deep-learning systems deployed in dynamic environments.
Rather than relying on static thresholds, we propose a method
that dynamically adjusts to evolving data distributions. Leveraging
key metrics such as training probability and information entropy,
our approach aims to provide a more responsive solution to the
challenges posed by changing environmental conditions. Through
experimentation across various deep-learning architectures, we
assess the effectiveness of our adaptive drift detection method in
comparison to existing approaches. We observed a maximum of 90%
increase in the detection precision compared to traditional methods
in some specific datasets. This result shed light on the potential
of adaptive techniques for addressing the inherent complexities
associated with model drift in dynamic deployment scenarios.

1 INTRODUCTION
As visual data modalities, including images and videos, proliferate
in today’s digital system, there has been a growing imperative for
specialized Database Management Systems (DBMS) capable of ef-
fectively analyzing these high-dimensional datasets [13]. Although
contemporary systems demonstrate commendable efficiency in
query execution, they are notably vulnerable to shifts in input data
distribution, which is known as concept drift. This susceptibility
becomes particularly obvious in circumstances where the input
video data is processed as continuous streams. [8]

A preliminary step in addressing concept drift involves its timely
detection and identification within these data streams. Extant liter-
ature on concept drift detection has explored methodologies such
as Discriminative Reconstruction Autoencoders (DRAE) [25] and
Local Outlier factor (LOF) [3], but these techniques were engineered
to handle model drifts in low-dimensional data and thus exhibit
sub-optimal performances when applied to high-dimensional data,
such as videos.

To ameliorate the limitations inherent in detecting concept drifts
in complicated, high-dimensional data streams, researchers have
refined their algorithms and detection frameworks. For instance,
ODIN [22] introduced DA-GAN, a combination of Adversarial Au-
toencoder (AAE) and generative Adversarial Network (GAN) to

detect changes in data distribution by ensuring minimal informa-
tion loss during encoding. Other distribution-based concept drift
detection systems include ADWIN [2] and VFDTc [9], which com-
pare two data windows to determine whether a change in data is
introduced or not [10].

In traditional classification tasks using neural networks, the soft-
max function conventionally serves as the final layer, transforming
raw logits into interpretable probabilities. Typically, the classifi-
cation decision is derived from the argmax of the softmax scores.
To address the challenge of model drift, our focus shifts to the
observation that high-accuracy models tend to yield markedly ele-
vated softmax scores for the correct class, dwarfing scores for other
classes. Consequently, when exposed to out-of-domain data, the
model should ideally exhibit a diminished argmax score, indicating
a lack of confidence in its prediction. With that in mind, setting up
threshold to filter out low confident samples as drifted items, and
treat high confidence sample as in-domain data, we should be able
to achieve an ideal result on both drift detection for out-of-domain
samples and classification on in-domian samples.

In this paper, we introduce the dynamic threshold method, a
novel approach designed to enhance the detection of model drift in
neural networks. Central to this method is the innovative use of key
metrics—training probability and information entropy—which are
dynamically adapted to detect shifts in model performance and data
distribution. We chose various metrics that measure the certainty
and confidence in a model’s predictions, providing a quantifiable
way to assess the predictability and stability of a model’s output.

Within this particular context, we consider adopting the trans-
former architecture to be an compelling and well-suited pursuit,
considering that transformers inherently possess an encoder-decoder
structure with its multi-head self-attention mechanism [24]. The
challenge would be to train the model to encapsulate enough in-
formation to differentiate various features in order to later detect
potential model drifting. It is worth noting that there have been
notable instances of utilizing vision transformers[7] as an image
encoder for tasks such as image classification [26], object detec-
tion [15], and semantic segmentation [23].

We present an assessment regarding the efficacy of the combina-
tion between dynamic thresholding and neural networks such as
Convolutional Neural Networks (CNNs) based concept drift models
and transformer-based concept drift models. Although there are
some classical techniques, such as LOF, addressing the model drift
of low-dimensional data, they usually do not perform well when
it comes to high-dimensional data. The exploration of evaluation
of high-dimensional such as images will be an intriguing direction.
Our investigation primarily revolves around two pivotal aspects:
Firstly, we will build CNNs that are suitable to the provided dataset
and integrate the dynamic thresholding to implement concept drift
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detection. Secondly, wewill explore whether the Transformer-based
model’s capabilities in outlier detection outperform the CNN-based
models across different datasets. The evaluation section of this pa-
per will provide an analysis of Transformer-based classification and
drift detection in comparison to the conventional CNN approach
alongside popular methods like LOF and AAE across different pro-
portions of outliers. By employing diverse datasets, such as MNIST
and CIFAR-10, our study aims to elucidate whether the incorpo-
ration of Transformers and dymanic thresholding method yields
enhanced accuracy compared to the baselines, thereby shedding
light on the transformative potential of these models in the realm
of image classification and drift detection for in-domain and out-
of-domain data. More specifically, we achieved different levels of
increase in accuracy compared to traditional outlier detection mod-
els based on statistical methods across different datasets. Among all
enhancements, we achieved a maximum of 90% increase in object
detection accuracy than these traditional models.

The successful integration of a Transformer-based model and
dynamic thresholding method for drift detection in video data
holds significant implications for the field of machine learning
and databases. This work showcases that the Transformer architec-
ture, renowned for its prowess in natural language processing tasks,
extends its applicability to the realm of video data analysis [13].
By achieving higher accuracy compared to the conventional GAN-
based approach, our research demonstrates that Transformers are
not confined solely to pure text-based NLP problems, but possess
the versatility to handle reduced-level video and image datasets
with equal proficiency.

Furthermore, the exploitation of the Transformer’s inherent self-
attention mechanism unveils a new paradigm in the detection of
model drift. This mechanism allows the model to focus on relevant
features, capturing nuanced temporal patterns within the video
data. This means that the Transformer’s ability to discern subtle
shifts in video content makes it a formidable tool for maintaining
model accuracy over extended periods. Such adaptability is para-
mount in applications ranging from surveillance systems to video
streaming platforms, where real-time adjustments to evolving data
distributions are essential.

In addition, the inherent parallelism harnessed by the Trans-
former architecture offers a compelling advantage in terms of com-
putational efficiency [17]. This translates to a substantial reduction
in both time and monetary costs associated with model training
and drift detection. The ability to process video data in parallel not
only expedites the training process but also enables the handling
of larger and more complex datasets. This, in turn, empowers re-
searchers and practitioners to tackle video analysis tasks at a scale
previously considered impractical.

2 RELATEDWORK
In the scope of this related work section, our emphasis is specifi-

cally directed toward the detection aspect of concept drifting, avoid-
ing the discussion that encompasses both detection and handling
strategies. Although various methodologies address the challenge
of concept drifting by incorporating mechanisms to detect and
adapt to changing patterns, our focus remains centered on methods

dedicated to identifying drifting phenomena. Such methods will
not be exhaustively explained within this context.
LOF. Introduced by Breunig et al., Local Outlier Factor (LOF) [3]
is a density-based method designed to identify outliers by assess-
ing the local density deviation of data points within a dataset. By
considering the ratio of a data point’s local density to that of its
neighbors, LOF excels in capturing anomalies in regions charac-
terized by varying data density. Researchers have leveraged LOF’s
ability to discern outliers in datasets with heterogeneous density
patterns, making it a valuable tool for uncovering anomalies amidst
complex and dynamic data structures.
DRAE. Discriminative Reconstruction Autoencoder (DRAE), pre-
sented by Xia et al., offers an approach by harnessing the recon-
struction errors of an autoencoder, DRAE adeptly discerns inliers
from outliers within low-dimensional representations.DRAE en-
hances discriminative power by infusing self-learned discriminative
information into the autoencoder’s learning process. This involves
a nuanced approach—rather than minimizing errors across all data,
emphasis is placed on minimizing errors from positive examples.
DRAE iteratively categorizes data as "positive" or "outlier" based
on their reconstruction errors, concurrently refining network pa-
rameters to yield more discriminative reconstructions.
DA-GAN. Dual-Adversarial GAN (DA-GAN) [22] is a novelmethod
that merges the strengths of an adversarial AE and a GAN. DA-GAN
functions as a distance-preserving projection technique, mapping
images to a low-dimensional latent space. Its components—encoder,
decoder, latent discriminator, and image discriminator—play vital
roles in refining the latent space and enhancing image reconstruc-
tion. Adversarial discriminators enforce dual constraints, ensuring
a smoother latent space without holes and high-quality encoding
with minimal information loss.
AUROC Presented by Hendrycks et al.„ Area Under the Receiver
Operating Characteristic curve (AUROC) [12] is a threshold inde-
pendent measure[5], graphically represented by the ROC curve,
which depicts the trade-off between true positive rate and false pos-
itive rate. Interpretatively, the AUROC signifies the probability that
a positive instance exhibits a higher detector score than a negative
instance. A random positive detector yields a 50% AUROC, while a
perfect classifier attains 100%. Acknowledging potential limitations
of AUROC, they also employ the Area Under the Precision-Recall
curve (AUPR) as a complementary evaluation metric. Which ad-
dresses the base rate issue by plotting precision against recall and
provides an informative perspective, especially when class imbal-
ances exist.
MD3. The Margin Density Drift Detection (MD3) methodology
[20] is introduced as a novel approach for concept drift detection in
streaming data. Unlike traditional methods relying on labeled data,
MD3 monitors changes in the margin density of robust classifiers
like Support Vector Machines. The margin, representing a classi-
fier’s uncertainty, is crucial for generalization over unseen data.
MD3 focuses on detecting changes in margin density, considering
it an indicative factor of Non-Stationarity. The methodology is ap-
plication and classifier independent, operating solely on unlabeled
data, making it a viable substitute for explicit labeled drift detection
techniques.
CBCDD. Critical Blindspot Cardinality Drift Detection,presented
by Sethi et al. [21],is designed for detecting concept drift in high



Model Drift Detection Using Dynamic Thresholding

dimensional data streams. The key innovation lies in tracking the
average number of samples within critical classification blindspots
over time, serving as a robust signal for drift in streaming data
environments. Importantly, CBCDD is distribution-independent,
classifier-independent, and operates on unlabeled data, making it
versatile and applicable in various scenarios.
PCA. Qahtan et al. [19] introduces a novel framework for detect-
ing abrupt changes in unlabeled multidimensional data streams,
employing Principal Component Analysis (PCA). Through the pro-
jection of data onto selected Principal Components (PCs), univariate
streams are formed, effectively capturing variations associated with
changes in underlying data variables such as mean, variance, and
correlations. The distinctive feature of this approach lies in the
independent monitoring of these streams, enabling efficient change
detection.
Resampling. Unlike past methods Harel et al. [11] introduces a
flexible and robust approach for detecting changes in prediction
problems, accommodating various types of concept drift by leverag-
ing random permutations of examples for multiple train-test splits.
This method focuses on detecting concept changes within a speci-
fied hypothesis class, mitigating false alarms for irrelevant changes.
This distinctive approach, previously explored mainly in classi-
fication contexts, prioritizes identifying target concept changes
through predictor errors.

3 SYSTEM OVERVIEW
3.1 Model Selection
In the realm of computer vision, selecting the appropriate model
architecture is paramount for the success of various tasks. Convolu-
tional Neural Networks (CNNs), which have been foundational in
image-related tasks, are adept at capturing local patterns and spatial
hierarchies within images. However, their sequential processing
limits parallelization, hindering their ability to efficiently capture
global context. In contrast, Transformers, initially designed for nat-
ural language processing, have recently demonstrated prowess in
computer vision with models like the Vision Transformer (ViT) and
Swin Transformer [16].

Transformers leverage self-attention mechanisms to capture
global dependencies effectively, allowing for parallelized processing
and a more comprehensive understanding of relationships across
the entire input sequence. The Vision Transformer, for example,
transforms an image into a sequence of flattened 2D patches, en-
abling themodel to process global contextual information efficiently.
This global understanding is particularly advantageous in scenarios
where object detection requires capturing relationships between
entities that may span the entirety of the input data.

In the context of model drift detection, there is a growing interest
in leveraging the capabilities of transformers, driven by findings
from recent studies. While the application of transformers in com-
puter vision tasks has traditionally been associated with tasks like
image classification and segmentation, their potential for detecting
subtle shifts in data distribution has been hinted at in the liter-
ature. Previous research, such as the work on DETR (DEtection
Transfomer) [4], demonstrated the effectiveness of transformers
in achieving state-of-the-art results in object detection tasks. The
ability of transformers to consider global context, as evidenced in

these studies, raises the hypothesis that they might outperform
CNNs in scenarios where detecting changes in the overall scene is
critical.

Drawing inspiration from these findings, our exploration into the
choice of model architecture for model drift detection is motivated
by the notion that transformers’ inherent global understanding
could provide a more nuanced perspective on evolving patterns in
the data. The hope is that this hypothesis, supported by insights
from previous transformer-based models in computer vision, will
hold true in the specific context of model drift detection. By em-
bracing transformers, we anticipate a more effective detection of
subtle and widespread changes in data distribution, ultimately con-
tributing to enhanced performance in scenarios where monitoring
and adapting to evolving global patterns are imperative.

3.2 Dynamic Threshold
We introduce a novel approach to efficiently detect model drift -
the dynamic threshold method. This method innovatively leverages
key metrics, including training probability and information entropy,
adapting thresholds in real-time to accurately detect model drift dur-
ing model prediction and evaluation. Such adaptability is crucial for
deep-learning models, particularly in response to the ever-changing
data distributions encountered in real-world environments.

The core idea of the dynamic threshold method is rooted in
the understanding that a deep learning model while being trained
on a dataset, does not merely learn the features of the input but
also assimilates essential information about the data’s distribution
and the model’s certainty in its predictions. This insight allows
us to harness these learned metrics as benchmarks. We establish
a threshold t, which serves as a dynamic reference point. When
the metrics derived from real-world data significantly deviate from
this threshold—indicative of a change in data distribution or model
certainty—we flag this as an instance of model drift.

Therefore, The challenge, and our focus, lies in determining
and selecting the appropriate threshold t. This threshold must be
dynamic, and capable of adjusting to evolving data patterns while
maintaining a balance between sensitivity to drift and stability
against false alarms. Our method involves a systematic approach
to calibrate and adapt t, ensuring it accurately reflects the model’s
learning and prediction landscape. By continuously monitoring and
adjusting t based on real-time data, our method promises enhanced
responsiveness and precision in drift detection, thereby significantly
improving the robustness and reliability of deep-learning models
in dynamic environments.

Training Probability. An intuition is to use the average maxi-
mal trained probability as the threshold to detect model drift. The
benchmark X is calculated as follows:

𝑋 =

∑𝑛
𝑖=1𝑚𝑎𝑥 (𝑃 (𝑥𝑖 ))

𝑛

where 𝑥𝑖 is the 1D probability vector for each prediction made
during the last epoch of training. The concept of training probability
is closely tied to the notion of model confidence. In probabilistic
terms, it can be viewed as the model’s estimated probability that a
given input belongs to a certain class. This is particularly evident in
classification tasks, where the model assigns a probability to each
class for a given input, reflecting its certainty or confidence in that
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classification. From a theoretical standpoint, training probability
is a manifestation of the model’s understanding of the data it has
been trained on. A low probability may suggest areas where the
model is uncertain, potentially due to a lack of representative data
or more complex patterns that are harder for the model to learn.
Either of these scenarios can indicate instances of model drift.

However, while training probability seems to be a good indi-
cator of model drift, it is not without its limitations. One of the
primary drawbacks is its susceptibility to overfitting. During EDA,
we discovered that some models (CNN), tend to assign very high
probabilities to predictions, even when all inputs in the testing data
were unseen drifted data, as shown in Figure 1. This phenomenon
was particularly pronounced in scenarios where the model had
achieved a high degree of overfitting to the training data. Such
overfitting led to an inflated sense of confidence in the model’s
predictions, as reflected in the training probabilities, which in turn
could indicate the emergence of model drift.

Therefore, it is necessary for us to discover a more reliable thresh-
old metric that can improve the accuracy of drift detection.

Information Entropy. A more robust method to detect model
drift is to use information entropy as the benchmark metric. In
information theory, information entropy measures the uncertainty
or randomness in the model’s predictions. Therefore, it provides a
quantifiable way to assess the predictability and the confidence of
a model in its prediction. The metric ¯𝐸 (𝑥) is calculated as follows:

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑃 (𝑥𝑖 ) log𝑏 𝑃 (𝑥𝑖 )

¯𝐸 (𝑋 ) =
∑𝑚
𝑖=1 𝐻 (𝑋𝑖 )

𝑚

Where 𝐻 (𝑋 ) is the information entropy of a single prediction, and
¯𝐸 (𝑥) is the average entropy of all predictions during the last epoch

of training. An entropy value closer to 0 indicates the model’s high
confidence in its prediction, while an entropy value farther away
from 0 implies increased uncertainty.

The integration of information entropy into our drift detection
method is based on the assumption that significant changes in
entropy can indicate shifts in the model’s understanding of the
underlying data distribution. A stable model on consistent data
typically exhibits relatively consistent entropy values, but as the
data begins to drift and drifts are introduced, the entropy is likely
to increase, reflecting the model’s decreased confidence in its pre-
dictions.

The advantage of using information entropy lies in its stability
and potential resistance to overfitting. Unlike training probabil-
ity, which can be overly optimistic in overfitted models, entropy
provides a more grounded and less variable measure. As shown in
Figure 2, when all inputs in the testing data were unseen drifted data,
the information entropy of all is less skewed than training proba-
bility shown in Figure 1. Therefore, information entropy serves as
a critical component of our dynamic threshold method, offering a
stable and reliable metric that enhances our ability to detect and
respond to model drift effectively.

3.3 Algorithm
Overview. After completing the model training phase, our algo-
rithm initiates by acquiring training probabilities, represented as 𝑃 .
This is accomplished by utilizing the trained model to predict the
training dataset. Subsequently, we apply the information entropy
function to each probability 𝑝 within 𝑃 . The next step involves
computing the mean of all 𝑝 values, establishing a dynamically
determined threshold. We then employ the probabilities obtained
from the test set, denoted as 𝑃 . For each 𝑝 in 𝑃 , we calculate the
entropy value 𝑒 . If 𝑒 exceeds our threshold, we identify it as an
outlier in the result instead of treating it as a classification problem.
Otherwise, we consider it an inlier and assign it the predicted label
𝑙 .

Algorithm 1 Outlier Detection using Dynamic Thresholding
𝑃 ← train_model() {𝑃 : probabilities}
(𝑃, 𝐿) ← test_model(𝑛) {𝑃 : probabilities, 𝐿: labels, 𝑛: percent-
age of outliers}
𝐿̂ ← [] {𝐿̂: predicted labels}
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← Mean(Entropy(𝑃 ))
for 𝑝 ∈ 𝑃 do
𝑒 ← Entropy(𝑝)
if 𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

Add outlier to 𝐿̂
else

Add l̂ to 𝐿̂
end if

end for

4 EXPERIMENT
4.1 Experiment Setup
Development. In our endeavor to address model-drift detection,
we undertake the development of our very own model-drift detec-
tion models, specifically the CNN-based models and Transformer-
based models, using Python 3.10.12. To empower these models,
we harnessed the capabilities of PyTorch 2.1.0 [18] and Tensor-
Flow 2.14.0 [1], leveraging their extensive features and libraries for
efficient model development and training.
Hardware. Our experimentation took place within the Google Co-
lab environment, where we had access to a Nvidia T4 GPU equipped
with 12 GB of RAM. Additionally, the underlying hardware infras-
tructure featured an Intel(R) Xeon(R) processor clocked at 2.2 GHz,
also furnished with 12 GB of RAM.
Datasets. The evaluation of our model-drift detection models in-
volved the utilization of two datasets, each chosen to test and vali-
date the effectiveness of our models in different scenarios.

1) MNIST: This dataset comprises a collection of 60,000 28 ×
28 black-and-white images, each depicting handwritten digits [6].
For our initial benchmarking, we selected MNIST due to its lower
computational resource requirements. Our primary objective with
MNIST was to assess the ability of our model-drift detection models
to accurately identify drifts as they occur.
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Figure 1: Illustration of Our Proposed Approach Architecture.

2) CIFAR-10: This dataset, consisting of 60,000 32 × 32 colored
images distributed across ten distinct classes, served as another cru-
cial dataset for our experiments [14]. CIFAR-10 offered a different
challenge and allowed us to test the effectiveness of our model-drift
detection models in a diverse visual data setting.
Dimensionality. It’s worth noting that while there exist advanced
techniques for detecting and handlingmodel drift in low-dimensional
data, our approach differs when dealing with high-dimensional data,
such as images. The dimensionality of each dataset is determined
by the number of pixels in each image. For the MNIST dataset, the
dimensionality of images is 784 (28 × 28 pixels) with one channel.
Meanwhile, for the CIFAR-10 dataset, the dimensionality of images
is 1024 (32 × 32 pixels) with three channels. These varying dimen-
sionality settings provide a comprehensive framework for assessing
our model-drift detection models’ ability to cope with diverse data
complexities, emphasizing the importance of rigorous testing and
evaluation in various scenarios.

4.2 Evaluation
Model Selection. In our study, we introduced a novel approach
to tackle the challenge of model drift detection. We incorporate
VIT[7], the transformer based architecture along with our dynamic
thresholding technique, a combination that hasn’t been explored be-
fore in this context. To evaluate the effectiveness of our method, we
plan to compare our detector with well-known baseline detectors
like LOF [3]. Additionally, we created a LeNet based traditional Con-
volutional Neural Network model with our dynamic thresholding
technique. This CNN model acts as a starting point for comparison,
helping us understand how well the transformer perform in model
drift detection compare to the CNN architecture.
Data Modification. In order to simulate real-world scenarios
where noisy data or outliers are commonplace, the data used in this
experiment was intentionally modified to include instances of both
in-scope and out-of-scope data. The datasets chosen for this study

were MNIST and CIFAR-10, widely used benchmarks in the field of
computer vision.

In the context of the MNIST dataset, our experimental design
involves executing the test set across all numerical digits, while
selectively training our model drift detector on a subset of these
digits. Specifically, we may choose to train the detector on digits 0
through 7, while administering the entire test set, encompassing
digits 0 through 9. Consequently, digits 0 through 7 are considered
in-scope data, while digits 8 and 9 are deliberately treated as out-
of-scope data. Analogously, a parallel procedure is applied to the
CIFAR-10 dataset, wherein certain classes are intentionally excluded
from the training set based on their labels. This emulates a deliberate
departure from the conventional training regimen.
Outlier Adjustment. Aligned with the methodology employed
in the ODIN [22] experiment, our investigation entails assessing
the performance of the drift detector across various proportions of
outlier instances. This systematic exploration involves introducing
different percentages of outliers and subsequently scrutinizing the
detector’s efficacy in identifying and categorizing instances that
deviate from the expected data distribution. This approach enables a
comprehensive analysis of the detector’s resilience and adaptability
to diverse outlier scenarios in order to test its robustness under
real-world conditions.

4.3 Metrics
In assessing the performance of our drift detector, we will employ
two key metrics: Overall Accuracy and Detection Accuracy.

Overall Accuracy. The Overall Accuracy metric takes into ac-
count all the correct predictions, this include both in-domain and
correctly classified samples as well as out-of-domain samples that
are accurately identified as drift instances. The formula for Overall
Accuracy is given by:

Overall Accuracy =
# of correct predictions

# of total samples
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Detection Accuracy. Detection Accuracy specifically focuses on
the ability of the detector to correctly identify drift instances among
all negative or out-of-domain samples. The formula for Detection
Accuracy is:

Detection Accuracy =
# of detected outliers

# of all outliers

4.4 Results
In our experimentation, we employ the Vision Transformer (VIT)
model alongside LeNet as our transformer and CNN models, re-
spectively. To perform a fair comparison with existing work, we
also incorporated LOF (Local Outlier Factor), a common outlier
detection technique, as the benchmark to run in our experiment.
These models were evaluated on both the MNIST dataset and the
CIFAR-10 dataset. In both datasets, the models were trained on the
first 8 categories and tested on all categories. We fixed the size of
the testing set to 4000 data points and manipulated the percentage
of outliers as an independent variable to investigate its influence
on both detection accuracy and drift accuracy. For instance, when
the percentage of outliers is 20%, we would randomly sample 3600
instances from categories 0-7 and 400 instances from categories 8-9
to form the testing set.

In Table 2, we can derive some noteworthy observations. Firstly,
both VIT and LeNet outperform LOF in terms of detection accuracy
by a significant margin, indicating their capabilities to accurately
capture outliers. Also, we can see that the drift detection accuracy
of VIT and LeNet tends to stay consistent across all percentages of
outliers, while the detection accuracy of LOF shows a downward
trend with the increase of the independent variable. This phenom-
enon suggests that VIT and LeNet are more robust and stable in
outlier detection across varying conditions. In contrast, LOF’s per-
formance appears to be more sensitive to the presence of outliers,
potentially due to its reliance on local neighborhood information
which can be disproportionately affected by outlier data.

Moreover, while the LeNet model achieves some impressive de-
tection accuracies, indicating its proficiency in correctly identifying
almost all outliers, its overall accuracy is considerably lower than
that of the VIT model. This suggests that the LeNet model tends to
detect drift aggressively, frequently mislabeling in-domain samples
as out-of-domain, leading to a higher-than-expected false positive
rate for outlier detection. Conversely, the VIT model demonstrates
a superior overall accuracy, signifying its efficacy in distinguishing
between in-domain and out-of-domain samples while performing
correct predictions for inliers at the same time. Consequently, the
VIT model maintains a commendable 0.95 detection accuracy while
achieving an overall accuracy of 0.90.

4.5 Error Analysis
CNN on MNIST. One particular interesting observation we made
was that although LeNet or other CNN models perform well on
image classification, they generally performed surprisingly poor
in respond to outliers with our proposed dynamic threshold. As
shown in Figure 2, tends to detect outliers aggressively, resulting
in a high false positive value in drift detection.

Unlike VIT, where inliners usually exhibit a fairly uniform dis-
tribution across all false classes and a moderate peak in predicted

Outliers MNIST CIFAR-10
LOF VIT LeNet LOF VIT LeNet

0% 0.900 0.898 0.509 0.900 0.312 0.453
10% 0.824 0.892 0.562 0.822 0.334 0.454
20% 0.738 0.897 0.613 0.739 0.359 0.496
30% 0.653 0.913 0.656 0.664 0.372 0.536
40% 0.566 0.917 0.708 0.585 0.398 0.582
50% 0.473 0.910 0.748 0.513 0.423 0.620

Table 1: Overall Accuracy on MNIST and CIFAR-10 using
dynamic threshold

Outliers MNIST CIFAR-10
LOF VIT LeNet LOF VIT LeNet

0% N/A N/A N/A N/A N/A N/A
10% 0.118 0.930 1.000 0.110 0.680 0.818
20% 0.094 0.944 0.999 0.098 0.691 0.829
30% 0.088 0.951 0.996 0.107 0.702 0.815
40% 0.083 0.966 0.996 0.106 0.707 0.824
50% 0.069 0.948 0.997 0.113 0.71 0.837

Table 2: Detection Accuracy on MNIST and CIFAR-10 using
dynamic threshold

class in softmax scores, LeNet showcases a heightened confidence
level for the predicted class in majority of inliners. While this in-
creased probability could be beneficial for classification tasks by
ensuring high certainty, it may adversely affect outlier detection.
The elevated confidence level raises the probability of establishing
a lower threshold from the training set, making it more challenging
for unseen samples from the test set to achieve a lower entropy
score. Consequently, these samples are more likely to be identified
as outliers, even if they shouldn’t be.
ViT on CIFAR-10. In our exploration of the Vision Transformer
(ViT) on the CIFAR-10 dataset, we have encountered notable chal-
lenges, despite implementing data augmentations and diverse per-
formance enhancing techniques. The model’s suboptimal perfor-
mance, in comparison to its success on the MNIST dataset, leads us
to speculate on a potential deficiency in ViT’s inductive bias toward
local relationships, particularly in lower layers. This speculation
aligns with findings by Zhu et al., which posits that ViT struggles
to grasp local relations effectively when faced with small, intricate
datasets.[27] Such limitations hinder the model’s ability to learn
the complexities of CIFAR-10 adequately.

In an effort to address these challenges, we investigated transfer
learning by utilizing pre-trained ViT models trained on ImageNet
and fine-tuning them for CIFAR-10. While achieving an impressive
prediction accuracy of approximately 95%, our evaluation method
revealed concerns about the model’s detection rate. We attribute
this to the pre-trained model’s extensive exposure to diverse classes
and images during its training on ImageNet. This exposure seems to
contribute to the model’s reluctance and lack of confidence in pre-
dictions, even when accurate. Consequently, this lack of confidence
poses a hurdle for our detection method, impeding its effectiveness
in identifying instances of model drifting.
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Figure 2: Confusion Matrices Comparison for LeNet and VIT
on MNIST

5 DISCUSSION
5.1 Current Limitations
Data Complexity. Our present detector manifests commendable
efficacy on tasks characterized by simplicity, as evidenced by its
notably superior performance on the MNIST dataset in comparison
to CIFAR-10. This performance discrepancy prompts speculation on
the dataset’s role, suggesting that the detector excels in scenarios
involving simpler, grayscale images such as those present in MNIST.
The intricate nature of CIFAR-10’s color images, with a greater
diversity of features and patterns, may introduce complexities that
challenge the current detector’s adaptability.
Training Cost. An additional constraint surfaces in the form of
training cost, which constitutes a substantial limitation. Specifically,
the training of our detector, leveraging the Vision Transformer (VIT)
model, necessitates a significantly more extensive temporal com-
mitment compared to the training of a conventional Convolutional
Neural Network (CNN) model. This increased training time poses
practical challenges, potentially impeding the scalability and effi-
ciency of our proposed detection framework in scenarios where
computational resources are constrained. Addressing these limi-
tations is integral to refining the detector’s applicability across a
spectrum of tasks and datasets.

5.2 Future Works
Larger datasets. While our current findings showcase the promis-
ing performance of the transformer model, particularly the Vision
Transformer (VIT), it is imperative to acknowledge that transform-
ers generally exhibit enhanced capabilities with larger datasets. The
modest scale of MNIST and CIFAR-10, though suitable for demon-
strating the effectiveness of our detector, limits the full exploration
of the transformer’s potential. Therefore, a pivotal avenue for fu-
ture work involves conducting experiments on substantially larger
datasets. This endeavor will not only provide a more comprehen-
sive evaluation of the transformer’s performance but also facilitate
a deeper understanding of its scalability and generalization across

diverse and expansive data domains. The outcomes of such inves-
tigations will contribute valuable insights into the optimal use of
transformer architectures in real-world, large-scale applications.
Leveraging Pretrained Models. An intriguing prospect for ad-
vancing our research lies in the integration of pre-trained trans-
former models. Pre-trained models, having been exposed to exten-
sive and diverse datasets during their training phase, often possess
heightened robustness and a broad understanding of complex pat-
terns. Leveraging pre-trained transformer architectures, such as
those trained on large-scale datasets like ImageNet, presents an
opportunity to imbue our detector with a richer knowledge base.
By fine-tuning these pre-trained models on the specific tasks asso-
ciated with drift detection in MNIST and CIFAR-10, we anticipate
a potential enhancement in the detector’s adaptability and perfor-
mance. This approach aligns with the current trend in leveraging
pre-trained models to bolster the efficiency and effectiveness of
machine learning applications across various domains.
Handling Model Drifts. An effective workflow for managing
model drift includes post-detection steps such as automating drift
resolution to preserve model accuracy and dependability over time.
When a significant drift is identified, the system should initiate an
automatic retraining protocol using the most current data, ensur-
ing ongoing relevance and precision. This concept of retraining
is not new and aligns with methodologies explored by various re-
searchers, including those from the ODIN team [22]. Additionally, a
feedback loop from the end-users can provide valuable insights into
how the model is performing in real-world scenarios, allowing for
more targeted adjustments and improvements. This comprehensive
approach ensures not only the detection but also the effective man-
agement of model drifts, thereby enhancing the overall robustness
and reliability of the system.

6 CONCLUSION
Detecting drift in data is a significant realm in machine learning
both in academia and industry production. Our research presents
an innovative approach to model drift detection, combining Vision
Transformer (ViT) and LeNet architectures with dynamic threshold-
ing, and demonstrates its efficacy using the MNIST and CIFAR-10
datasets. This novel method not only outperforms traditional tech-
niques like Local Outlier Factor (LOF) but also unveils the potential
of transformer models in machine learning challenges. The find-
ings emphasize the importance of adaptable and robust methods in
handling dynamically evolving data landscapes in the real-world
setting, paving the way for future work to explore more complex
datasets and real-time adaptation in diverse domains. This study
marks a meaningful advancement in model drift detection, offer-
ing a foundation for further research and practical applications in
dynamic data environments.
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